
Abstract Expression Grammar Symbolic
Regression

Michael F. Korns

Korns Associates, 1 Plum Hollow, Henderson, Nevada 89052 USA
mkorns@korns.com.

Abstract. This chapter examines the use of Abstract Expression Grammars
to perform the entire Symbolic Regression process without the use of Genetic
Programming per se. The techniques explored produce a symbolic regression
engine which has absolutely no bloat, which allows total user control of the
search space and output formulas, which is faster, and more accurate than
the engines produced in our previous papers using Genetic Programming.

The genome is an all vector structure with four chromosomes plus ad-
ditional epigenetic and constraint vectors, allowing total user control of the
search space and the final output formulas. A combination of specialized com-
piler techniques, genetic algorithms, partical swarm, aged layered populations,
plus discrete and continuous differential evolution are used to produce an im-
proved symbolic regression sytem.

Nine base test cases, from the literature, are used to test the improvement
in speed and accuracy. The improved results indicate that these techniques
move us a big step closer toward future industrial strength symbolic regression
systems.

Key words: Abstract Expression Grammars, Differential Evolution, Gram-
mar Template Genetic Programming, Genetic Algorithms, Particle Swarm,
Symbolic Regression.



2 Michael F. Korns

1 Introduction

This chapter examines techniques for improving symbolic regression systems
with the aim of achieving entry-level industrial strength. In four previous
papers (Korns, 2006), (Korns, 2007), (Korns, 2008), and (Korns, 2009), our
pursuit of industrial scale performance with large-scale, symbolic regression
problems, required us to reexamine many commonly held beliefs and, of ne-
cessity, to borrow a number of techniques from disparate schools of genetic
programming and recombine them in ways not normally seen in the published
literature. The techniques of abstract expression grammars were developed,
but expored only tangentially.

While the techniques, described in detail in (Korns 2009), produce a sym-
bolic regression system of breadth and strength, lack of user control of the
search space, bloated unreadable output formulas, accuracy, and slow conver-
gence speed are all issues keeping an industrial strength symbolic regression
system tantalizingly out of reach. In this chapter abstract expression gram-
mars become the main focus and are promoted as the sole means of performing
symbolic regression. Using the nine base test cases from (Korns, 2007) as a
training set, to test for improvements in accuracy, we constructed our symbolic
regression system using these important techniques:

• Abstract expression grammars
• Universal abstract goal expression
• Standard single point vector-based mutation
• Standard two point vector-based cross over
• Continuous vector differential evolution
• Discrete vector differential evolution
• Continuous particle swarm evolution
• Pessimal vertical slicing and out-of-sample scoring during training
• Age-layered populations
• User defined epigenetic factors
• User defined constraints

For purposes of comparison, all results in this paper were achieved on
two workstation computers, specifically an Intel Core 2 Duo Processor T7200
(2.00GHz/667MHz/4MB) and a Dual-Core AMD Opteron Processor 8214
(2.21GHz), running our Analytic Information Server software generating Lisp
agents that compile to use the on-board Intel registers and on-chip vector
processing capabilities so as to maximize execution speed, whose details can
be found at www.korns.com/Document Lisp Language Guide.html. Further-
more, our Analytic Information Server is available in an open source software
project at aiserver.sourceforge.net.



Abstract Expression Grammar Symbolic Regression 3

1.1 Testing Regimen and Fitness Measure

Our testing regimen uses only statistical best practices out-of-sample testing
techniques. We test each of the nine test cases on matrices of 10000 rows
by 5 columns with no noise, and on matrices of 10000 rows by 20 columns
with 40% noise, before drawing any performance conclusions. Taking all these
combinations together, this creates a total of 18 separate test cases. For each
test a training matrix is filled with random numbers between -50 and +50.
The target expression for the test case is applied to the training matrix to
compute the dependent variable and the required noise is added. The symbolic
regression system is trained on the training matrix to produce the regression
champion. Following training, a testing matrix is filled with random numbers
between -50 and +50. The target expression for the test case is applied to
the testing matrix to compute the dependent variable and the required noise
is added. The regression champion is evaluated on the testing matrix for all
scoring (i.e. out of sample testing).

Our two fitness measures are described in detail in (Korns 2009) and con-
sist of a standard least squared error which is normalized by dividing LSE by
the standard deviation of Y (dependent variable). This normalization allows
us to meaningfully compare the normalized least squared error (NLSE) be-
tween different problems. In addition we construct a fitness measure known as
tail classification error, TCE, which measures how well the regression cham-
pion classifies the top 10% and bottom 10% of the data set. A TCE score of
less than 0.20 is excellent. A TCE score of less than 0.30 is good; while, a
TCE of 0.30 or greater is poor.

2 Previous Results on Nine Base Problems

The previously published results (Korns 2009) of training on the nine base
training models on 10,000 rows and five columns with no random noise and
only 20 generations allowed, are shown below 1.

In general, training time is very reasonable given the difficulty of some of
the problems and the limited number of training generations allowed. Average
percent error performance varies from excellent to poor with the linear and
cubic problems showing the best performance. Minimal differences between
training error and testing error in the mixed and ratio problems suggest no
over-fitting.

Surprisingly, long and short classification is fairly robust in most cases
including the very difficult ratio, and mixed test cases. The salient observation
is the relative ease of classification compared to regression even in problems
with this much noise. In some of the test cases, testing NLSE is either close
to or exceeds the standard deviation of Y (not very good); however, in many
of the test cases classification is below 0.20. (very good).

1 The nine base test cases are described in detail in (Korns, 2007).



4 Michael F. Korns

Table 1. Result For 10K rows by 5 columns no Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 1 0.00 0.00 0.00 0.00
cubic 1 0.00 0.00 0.00 0.00
cross 145 0.00 0.00 0.00 0.00
elipse 1 0.00 0.00 0.00 0.00
hidden 3 0.00 0.00 0.00 0.00
cyclic 1 0.02 0.00 0.00 0.00
hyper 65 0.17 0.00 0.17 0.00
mixed 233 0.94 0.32 0.95 0.32
ratio 229 0.94 0.33 0.94 0.32

The previously published results (Korns 2009) of training on the nine base
training models on 10,000 rows and twenty columns with 40% random noise
and only 20 generations allowed, are shown below.

Table 2. Result for 10K rows by 20 columns with 40% Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 82 0.11 0.00 0.11 0.00
cubic 59 0.11 0.00 0.11 0.00
cross 127 0.87 0.25 0.93 0.32
elipse 162 0.42 0.04 0.43 0.04
hidden 210 0.11 0.02 0.11 0.02
cyclic 233 0.39 0.11 0.35 0.12
hyper 163 0.48 0.06 0.50 0.07
mixed 206 0.90 0.27 0.94 0.32
ratio 224 0.90 0.26 0.95 0.33

Clearly the previous symbolic regression system performs most poorly on
the test cases mixed and ratio with conditional target expressions. There is
no evidence of over-fitting shown by the minimal differences between training
error and testing error. Plus, the testing TCE is relatively good in both mixed
and ratio test cases. Taken together, these scores portray a symbolic regression
system which is ready to handle some industrial strength problems except for
a few serious issues.

The output formulas are often so bloated, with intron expressions, that
they are practically unreadable by humans. This seriously limits the accep-
tance of the symbolic regression system for many industrial applications.
There is no user control of the search space, thus making the system im-
practical for most specialty applications. And of course we would love to see



Abstract Expression Grammar Symbolic Regression 5

additional speed and accuracy improvements because industry is insatiable
on those features.

A new architecture which will completely eliminate bloat, allow total user
control over the search space and the final output formulas, improve our re-
gression scores on the two conditional base test cases, and deliver an increase
in learning speed, is the subject of the remainder of this chapter.

3 New System Architecture

Our new symbolic regression system architecture is based entirely upon an Ab-
stract Expression Grammar foundation. A single abstract expression, called
the goal expression, defines the search space during each symbolic regres-
sion run. The objective of a symbolic regression run is to optimize the goal
expression.

An example of a goal expression is: y = f0(c0*x5)+(f1(c1)/(v0+3.14)).
As described in detail in (Korns 2009), the expression elements f0, f1, *, +,
and / are abstract and concrete functions(operators). The elements v0, and x5
are abstract and concrete features. The elements c0, c1, and 3.14 are abstract
and concrete real constants. Since the goal expression is abstract, there are
many possible concrete solutions.

• y = f0(c0*x5)+(f1(c1)/(v0+3.14)) (...to be solved...)
• y = sin(-1.45*x5)+(log(22.56)/(x4+3.14)) (...possible solution...)
• y = exp(38.16*x5)+(tan(-8.41)/(x0+3.14)) (...possible solution...)
• y = square(-0.16*x5)+(cos(317.1)/(x9+3.14)) (...possible solution...)

The objective of symbolic regression is to find an optimal concrete solution
to the abstract goal expression. In our system architecture, each individual
solution to the goal expression is implemented as a set of vectors containing
the solution values for each abstract function, feature, and constant present
in the goal expression. This allows the symbolic regression system to be based
upon an all vector genome which is convenient for genetic algorithm, particle
swarm, and differential evolution styled population operators. In addition to
the regular vector chromosomes providing solutions to the goal expression,
epigenetic wrappers and constraint vectors provide an important degree of
control over the search process and will be discussed in detail later in this
chapter. Taken all together our new symbolic regression system is based upon
the following genome.

• Genome with four chromosome vectors
• Each chromosome has an epigenetic wrapper
• There are two user contraint vectors



6 Michael F. Korns

The new system is constructed using these important techniques.

• Universal abstract goal expression
• Standard single point vector-based mutation
• Standard two point vector-based cross over
• Continuous vector differential evolution
• Discrete vector differential evolution
• Continuous particle swarm evolution
• Pessimal vertical slicing and out-of-sample scoring during training
• Age-layered populations
• User defined epigenetic factors
• User defined constraints

The universal abstract goal expression allows the system to be used for
general symbolic regression and will be discussed in detail later in this chapter.
Both single point vector-based mutation and two point vector-based cross
over are discussed in (Man 1999). Continuous and discrete vector differential
evolution are discussed in (Price 2005). Continuous particle swarm evolution is
discussed in (Eberhardt 2001). Pessimal vertical slicing is discussed in (Korns
2009). Age-layered populations are discussed in (Hornby 2006) and (Korns
2009). User defined epigenetic factors and user defined constraints will be
discussed in detail later in this chapter.

However, before proceeding to discuss the details of the system impleme-
nation, we will review abstract expression grammars as discussed in detail in
(Korns 2009).

3.1 Review of Abstract Expression Grammars

The simple concrete expression grammar we use in our symbolic regression
system is a C-like functional grammar with the following basic elements.

• Real Numbers: 3.45, -.0982, 100.389, and all other real constants.
• Row Features: x1, x2, x9, and all other features.
• Binary Operators: +, *, /, %, max(), min(), mod()
• Unary Operators1: sqrt(), square(), cube(), abs(), sign(), sigmoid()
• Unary Operators2: cos(), sin(), tan(), tanh(), log(), exp()
• Relational Operators: <, <=, ==, ! =, >=, >
• Conditional Operator: (expr < expr) ? expr : expr)
• Colon Operator: expr : expr
• noop Operator: noop()

Our numeric expressions are C-like containing the elements shown above
and surrounded by regression commands such as, regress(), svm(), etc. Cur-
rently we support univariate regression, multivariate regression, and support



Abstract Expression Grammar Symbolic Regression 7

vector regression. Our conditional expression operator (...) ? (...) : (...) is the
C-like conditional operator where the ? and : operators always come in tan-
dem. Our noop operator is an idempotent which simply returns its first argu-
ment regardless of the number of arguments: noop(x7,x6/2.1) = x7. Our basic
expression grammar is functional in nature, therefore all operators are viewed
grammatically as function calls. Our symbolic regression system creates its
regression champion using evolution; but, the final regression champion will
be a compilation of a basic concrete expression such as:

• (E1): f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

Computing an NLSE score for f requires only a single pass over every
row of X and results in an attribute being added to f by executing the score
method compiled into f as follows.

• f.NLSE = f.score(X,Y).

Suppose that we are satisfied with the form of the expression in (E1);
but, we are not sure that the real constant 45.3 is optimal. We can enhance
our symbolic regression system with the ability to optimize individual real
constants by adding abstract constant rules to our built-in algebraic expression
grammar.

• Abstract Constants: c1, c2, and c10

Abstract constants represent placeholders for real numbers which are to be
optimized by the symbolic regression system. To further optimize f we would
alter the expression in (E1) as follows.

• (E2): f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3)

The compiler adds a new real number vector, C, attribute to f such that f.C
has as many elements as there are abstract constants in (E2). Optimizing this
version of f requires that the built-in score method compiled into f be changed
from a single pass to a multiple pass algorithm in which the real number
values in the abstract constant vector, f.C, are iterated until the expression in
(E2) produces an optimized NLSE. This new score method has the side effect
that executing f.score(X,Y) also alters the abstract constant vector, f.C, to
optimal real number choices. Clearly the particle swarm (Eberhardt 2001)
and differential evolution algorithms provide excellent candidate algorithms
for optimizing f.C and they can easily be compiled into f.score by common
compilation techniques currently in the main stream. Summarizing, we have
a new grammar term, c1, which is a reference to the 1st element of the real
number vector, f.C (in C language syntax c1 == f.C[1]). The f.C vector is



8 Michael F. Korns

optimized by scoring f, then altering the values in f.C, then repeating the
process iteratively until an optimum NLSE is achieved. For instance, if the
regression champion agent in (E2) is optimized with:

• f.C == < 45.396 >

Then the optimized regression champion agent in (E2) has a concrete
conversion counterpart as follows:

• f = (log(x3)/sin(x2*45.396))>x4 ? tan(x6) : cos(x3)

Suppose that we are satisfied with the form of the expression in (E1); but,
we are not sure that the features, x2, x3, and x6, are optimal choices. We can
enhance our symbolic regression system with the ability to optimize individual
features by adding abstract feature rules to our built-in algebraic expression
grammar.

• Abstract Features: v1, v2, and v10

Abstract features represent placeholders for features which are to be op-
timized by the nonlinear regression system. To further optimize f we would
alter the expression in (E1) as follows.

• (E3): f = (log(v1)/sin(v2*45.3))>v3 ? tan(v4) : cos(v1)

The compiler adds a new integer vector, V, attribute to f such that f.V
has as many elements as there are abstract features in (E3). Each integer
element in the f.V vector is constrained between 1 and M, and represents a
choice of feature (in x). Optimizing this version of f requires that the built-in
score method compiled into f be changed from a single pass to a multiple
pass algorithm in which the integer values in the abstract feature vector, f.V,
are iterated until the expression in (E3) produces an optimized NLSE. This
new score method has the side effect that executing f.score(X,Y) also alters
the abstract feature vector, f.V, to integer choices selecting optimal features
(in x). Clearly the genetic algorithm (Man 1999), discrete particle swarm
(Eberhardt 2001), and discrete differential evolution (Price 2005) algorithms
provide excellent candidate algorithms for optimizing f.V and they can eas-
ily be compiled into f.score by common compilation techniques currently in
the main stream. The f.V vector is optimized by scoring f, then altering the
values in f.V, then repeating the process iteratively until an optimum NLSE
is achieved. For instance, the regression champion agent in (E3) is optimized
with:

• f.V == < 2, 4, 1, 6 >



Abstract Expression Grammar Symbolic Regression 9

Then the optimized regression champion agent in (E3) has a concrete
conversion counterpart as follows:

• f = (log(x2)/sin(x4*45.396))>x1 ? tan(x6) : cos(x2)

Similarly, we can enhance our nonlinear regression system with the ability
to optimize individual functions by adding abstract functions rules to our
built-in algebraic expression grammar.

• Abstract Functions: f1, f2, and f10

Abstract functions represent placeholders for built-in functions which are
to be optimized by the nonlinear regression system. To further optimize f we
would alter the expression in (E2) as follows.

• (E4): f = (f1(x3)/f2(x2*45.3))>x4 ? f3(x6) : f4(x3)

The compiler adds a new integer vector, F, attribute to f such that f.F
has as many elements as there are abstract features in (E4). Each integer
element in the f.F vector is constrained between 1 and (number of built-in
functions available in the expression grammar), and represents a choice of
built-in function. Optimizing this version of f requires that the built-in score
method compiled into f be changed from a single pass to a multiple pass
algorithm in which the integer values in the abstract function vector, f.F,
are iterated until the expression in (E4) produces an optimized NLSE. This
new score method has the side effect that executing f.score(X,Y) also alters
the abstract function vector, f.F, to integer choices selecting optimal built-in
functions. Clearly the genetic algorithm (Man 1999), discrete particle swarm
(Eberhardt 2001), and discrete differential evolution (Price 2005) algorithms
provide excellent candidate algorithms for optimizing f.F and they can easily
be compiled into f.score by common compilation techniques currently in the
main stream. Summarizing, we have a new grammar term, f1, which is an
indirect function reference thru to the 1st element of the integer vector, f.F (in
C language syntax f1 == funtionList[f.F[1]]). The f.F vector is optimized by
scoring f, then altering the values in f.F, then repeating the process iteratively
until an optimum NLSE is achieved. For instance, if the valid function list in
the expression grammar is

• f.functionList = < log, sin, cos, tan, max, min, avg, cube, sqrt >

And the regression champion agent in (E4) is optimized with:

• f.F = < 1, 8, 2, 4 >



10 Michael F. Korns

Then the optimized regression champion agent in (E4) has a concrete
conversion counterpart as follows:

• f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3)

The built-in function argument arity issue is easily resolved by having each
built-in function ignore any excess arguments and substitute defaults for any
missing arguments.

Finally, we can enhance our nonlinear regression system with the ability
to optimize either features or constants by adding abstract term rules to our
built-in algebraic expression grammar.

• Abstract Terms: t1, t2, and t10

Abstract terms represent placeholders for either abstract features or con-
stants which are to be optimized by the nonlinear regression system. To further
optimize f we would alter the expression in (E2) as follows.

• (E5): f = (log(t0)/sin(t1*t2))>t3 ? tan(t4) : cos(t5)

The compiler adds a new binary vector, T, attribute to f such that f.T has
as many elements as there are abstract terms in (E5). Each binary element
in the f.T vector is either 0 or 1, and represents a choice of abstract feature
or abstract constant. Adding abstract terms allows the sytem to construct a
universal formula containing all possible concrete formulas. Additional details
on Abstract Expression Grammars can be found in (Korns 2009).

4 Universal Abstract Expressions

A general nonlinear regression system accepts an input matrix, X, of N rows
and M columns and a dependent variable vector, Y, of length N. The depen-
dent vector Y is related to X thru the (quite possibly nonlinear) transforma-
tion function, Q, as follows: Y[n] = Q(X[n]). The nonlinear transformation
function, Q, can be related to linear regression systems, without loss of gen-
erality, as follows. Given an N rows by M columns matrix X (independent
variables), an N vector Y (dependent variable), and a K+1 vector of coeffi-
cients, the nonlinear transformation, Q, is a system of K transformations, Qk :
(R1xR2x...RM ) −> R, such that y = C0+(C1∗Q1(X))+...(CK∗QK(X))+err
minimizes the normalized least squared error.

Obviously, in this formalization, a nonlinear regression system is a linear
regression system which searches for a set of K suitable transformations which
minimize the normalized least squared error. If K is equal to M, then Q is



Abstract Expression Grammar Symbolic Regression 11

dimensional, and Q is covering if, for every m in M, there is at least one
instance of Xm in at least one term Qk.

With reference to our system architecture, what is needed to implement
general nonlinear regression, in this formalization, is a method of constructing
a universal goal expression which contains all possible nonlinear transforma-
tions up to a pre-specified complexity level. Such a method exists and is
described as follows.

Given any concrete expression grammar, suitable for nonlinear regression,
we can construct a universal abstract goal expression, of an arbitrary grammar
node depth level, which contains all possible concrete instance expressions
within any one of the K transformations in Q. For instance, the universal
abstract expression, U0, of all Qk of depth level 0 is t0. Remember that t0 is
either v0 or c0. The universal abstract expression, U1, of all Qk of depth level
1 is f0(t0,t1). In general we have the following.

• U0: t0
• U1: f0(t0,t1)
• U2: f0(f1(t0,t1),f2(t2,t3))
• U3: f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))
• Uk: f0(Uk−1,Uk−1)

Given any suitable functional grammar with features, constants, and op-
erators, we add a special operator, noop, which simply returns its first ar-
gument. This allows any universal expression to contain all smaller concrete
expressions. For instance, if f0 = noop, then f0(t0,t1) = t0. We solve the arity
problem for unary operators by altering them to ignore the rightmost argu-
ments, for binary operators by altering them to substitute default arguments
for missing rightmost arguments, and for N-ary operators by wrapping the
additional arguments onto lower levels of the binary expression using appro-
priate context sensitive grammar rules. For example, let’s see how we can
wrap the 4-ary conditional function(operator) ? onto multiple grammar node
levels using context sensitive constraints.

• y = f0(f1(expr,expr),f2(expr,expr))

Clearly if, during evolution in any concrete solution, the abstract function
f0 were to represent the ? conditional function, then the abstract function
f1 would be restricted to one of the relational functions(operators), and the
abstract function f2 would be restricted to only the colon function(operator).
Therefore one would have any number of possible solutions to the goal expres-
sion, but some of the possible solutions would violate these context sensitive
constraints and would be unreasonable. The assertion that certain possible
solutions are unreasonable depends upon the violation of context sensitive
constraints implicit with each operator as follows.



12 Michael F. Korns

• y = f0(f1(expr,expr),f2(expr,expr)) (goal expression)
• y = ?(<(expr,expr),:(expr,expr)) (reasonable solution)
• y = ?(max(expr,expr),mod(expr,expr)) (unreasonable solution)
• y = ?(+(expr,expr),:(expr,expr)) (unreasonable solution)
• y = +(mod(expr,expr),/(expr,expr)) (reasonable solution)
• y = +(mod(expr,expr),:(expr,expr)) (unreasonable solution)

Applying our system architecture to solve the problem of general non-
linear regression absolutely requires the implementation of context sensitive
grammar rules to keep the various concrete solutions reasonable during the
evolution process. This unavoidable mathematical property of unrestricted
nonlinear regression transformations requires us to extend the genome to in-
clude context sensitive contraints. Since the genome must be extended to
include context sensitive constraints, we use this opportunity to extend the
genome to give much greater implicit and explicit user control of the search
process.

In our new system architecture, the genome is extended such that each
genome has both epigenetic and constraint wrapper vectors which, in addi-
tion to enforcing appropriate context sensitive grammar rules, can be pro-
moted to give the user much greater implicit and explicit control of the search
space. Control of the search space will become a very important aspect of fu-
ture nonlinear regression systems and will be discussed in detail later in this
chapter.

5 Constraints

In order to perform general symbolic regression with a universal abstract goal
expression, the genome must be context sensitive. This implies that for some
solutions of the abstract goal expression, certain choices of concrete features,
concrete real numbers, or concrete functions are unreasonable. Consider the
following goal expression: y = f0(f1(expr,expr),f2(expr,expr)). If we have no
additional information about any particular solution to this goal expression,
then we must assume that the constraints for abstract functions f0, f1, and f2
are as follows (i.e. unconstrained).

• constraints: f0(+ * / % max min mod sqrt square cube abs sign sigmoid
cos sin tan tanh log exp < <= == ! = >= > ? : noop)

• constraints: f1(+ * / % max min mod sqrt square cube abs sign sigmoid
cos sin tan tanh log exp < <= == ! = >= > ? : noop)

• constraints: f2(+ * / % max min mod sqrt square cube abs sign sigmoid
cos sin tan tanh log exp < <= == ! = >= > ? : noop)

However if we know that a particular solution has selected f0 to be the
operator ?, then we must implicitly assume that the constraints for abstract
functions f0, f1, and f2, with respect to that solution are as follows.



Abstract Expression Grammar Symbolic Regression 13

• constraints: f0(?)
• constraints: f1(< <= == ! = >= >)
• constraints: f2(:)

In the goal expression genome, f0 is a single gene located in position zero in
the chromosome for abstract functions. The constraints are wrapped around
each chomosome and are a vector of reasonable choices for each gene. In a
context insensitive genome, chosing any specific value for gene f0 or gene
v6, etc. has no effect on the contraint wrappers in the genome. However, in a
context sensitive genome, chosing any specific value for gene f0 or gene v6, etc.
may have an effect on the contraint wrappers in the genome. Furthermore,
we are not limited to implicit control of the genome’s contraint wrappers.
We can extend control of the genome’s contraints to the user in an effort to
allow greater control of the search space. For instance, if the user wanted to
perform a univariate regression on a problem with ten features but desired only
logrithmic transforms in the output, the following abstract goal expression
would be appropriate.

• y = f0(v0) where f0(cos sin tan tanh)

Publishing the genome’s contraints for explicit user guidance is an attempt
to explore greater user control of the search space during the evolutionary
process.

6 Epigenome

In order to perform symbolic regression with a single abstract goal expression,
all of the individual solutions must have the same shape genome. In a con-
text insensitive architecture with only one population island performing only
a general search strategy, this is not an issue. However, if we wish to perform
symbolic regression, with a single abstract goal expression, on multiple pop-
ulation islands each searching a different part of the problem space, then we
have to be more sophisticated in our approach.

We have already seen how constraints can be used to control, both im-
plicitly and explicitly, evolutionary choices within a single gene. But what if
we wish to influence which genes are chosen for exploration during the evolu-
tionary process? Then we must provide some mechanism for choosing which
genes are to be chosen and which genes are not to be chosen for exploration.

Purely arbitrarily and in the sole interest of keeping faith with the original
biological motivation of genetic algorithms, we choose to call genes which
are chosen for exploration during evolution as expressed and genes which are
chosen NOT to be explored during evolution as unexpressed. Furthermore, the
wrapper around each chomosome, which determines which genes are and are
not expressed, we call the epigenome.



14 Michael F. Korns

Once again, consider the following goal expression.

• regress(f0(f1(expr,expr),f2(expr,expr))) where f0(?)

Since we know that the user has requsted only solutions where f0 has
selected to be the operator ?, then we must implicitly assume that the con-
straints and epigenome for abstract functions f0, f1, and f2, with respect to
any solution are as follows.

• constraints: f0(?)
• constraints: f1(< <= == ! = >= >)
• constraints: f2(:)
• epigenome: ef(f1)

We can assume the epigenome is limited to function f1 because, with both
gene f0 and gene f2 constrained to a single choice each, f0 and f2 are implic-
itly no longer allowed to vary during evolution, with respect to any solution.
Effectively both f0 and f2 are unexpressed.

In the goal expression genome, ef is the epigenome associated with the
chromosome for abstract functions. The epigenomes are wrapped around
each chomosome and are a vector of expressed genes. In a context insensi-
tive genome, chosing any specific value for gene f0 or gene v6, etc. has no
effect on the contraint wrappers or the epigenome. However, in a context sen-
sitive genome, chosing any specific value for gene f0 or gene v6, etc. may have
an effect on the contraint wrappers and the epigenome. Of course, we are not
limited to implicit control of the epigenome. We can extend control of the
epigenome to the user in an effort to allow greater control of the search space.
For instance, the following goal expression is an example of a user specified
epigenome.

• (E6): regress(f0(f1(f2(v0,v1),f3(v2,v3)),f4(f5(v4,v5),f6(v6,v7))))
• (E6.1): where {}
• (E6.2): where {ff(noop) f2(cos sin tan tanh) ef(f2) ev(v0)}

Obviously expression (E6) has only one genome; however, the two where
clauses request two distinct simultaneous search strategies. The first where
clause (E6.1) tells the system to perform an unconstrained general search of
all possible solutions. The second where clause (E6.2) tells the system to si-
multaneously perform a more complex search among a limited set of possible
solutions as follows. The ff(noop) condition tells the system to initialize all
functions to noop unless otherwise specified. The f2(cos sin tan tanh) condi-
tion tells the system to restrict abstract function f2 to only the trigonometric
functions starting with cos. The ef(f2) epigenome tells the system that only
f2 will participate in the evolutionary process. The ev(v0) epigenome tells the



Abstract Expression Grammar Symbolic Regression 15

system that only v0 will participate in the evolutionary process. Therefore,
(E6.2) causes the system to evolve only solutions of a single trignonomet-
ric function on a single feature i.e. tan(x4), cos(x0), etc. These two distinct
search strategies are explored simultaneously. The resulting champion will be
the winning (optimal) solution across all simultaneous search strategies.

7 Control

The user community is increasingly demanding better control of the search
space and better control of the output from symbolic regression systems. In
search of a control paradigm for symbolic regression, we have chosen to notice
the relationship of SQL to database searches. Originally database searches
where highly constrained and heavily dictated by the choice of storage mech-
anism. With the advent of relational databases, searches became increasingly
under user control to the point that modern SQL is amazingly flexible.

An unanswered research question is how much user control of the symbolic
regression process can be reasonably achieved? Our system architecture allows
us to use abstract goal expressions to better explore the possibilities for user
control. Given the immense value of search space reduction and search special-
ization, the symbolic regression system can benefit greatly if the epigenome
and the constraints are made available to the user. This allows the user to
specify goal formulas and candidate individuals which are tailored to specific
applications. For instance, the following univariate abstract goal expression is
a case in point.

• (E7): regress(f0(f1(f2(v0,v1),f3(v2,v3)),f4(f5(v4,v5),f6(v6,v7))))
• (E7.1): where {}
• (E7.2): where {ff(noop) f2(cos sin tan tanh) ef(f2) ev(v0)}
• (E7.3): where {ff(noop) f1(noop,*) f2(*) ef(f1) ev(v0,v1,v2)}
• (E7.4): where {ff(noop) f0(cos sin tan tanh) f1(noop,*) f2(*) ef(f0,f1)

ev(v0,v1,v2)}
• (E7.5): where {f0(?) f4(:)}

Expression (E7) has only one genome and can be entered as a single goal
expression requesting five distinct simultaneous search strategies. Borrowing
a term from chess playing programs, we can create an opening book by adding
where clauses like (E7.2), (E7.3), (E7.4), and (E7.5).

The first where clause (E7.1) tells the system to perform an unconstrained
general search of all possible solutions.

The second where clause (E7.2) tells the system to evolve only solutions of
a single trignonometric function on a single feature i.e. tan(x4), cos(x0), etc.

In the third where clause (E7.3), the f1(noop,*) condition tells the system
to restrict abstract function f1 to only the noop and * starting with noop.
The f2(*) condition tells the system to restrict abstract function f2 to only



16 Michael F. Korns

the * function. The ef(f1) epigenome tells the system that only f1 will partici-
pate in the evolutionary process. The ev(v0,v1,v2) epigenome tells the system
that only v0, v1, and v2 will participate in the evolutionary process. There-
fore, (E7.3) causes the system to evolve champions of a pair or a triple cross
correlations only i.e. (x3*x1) or (x1*x4*x2).

In the fourth where clause (E7.4), the ff(noop) condition tells the system
to initialize all functions to noop unless otherwise specified. The f0(cos sin tan
tanh) condition tells the system to restrict abstract function f0 to only the
trigonometric functions starting with cos. The f1(noop,*) condition tells the
system to restrict abstract function f1 to only the noop and * starting with
noop. The f2(*) condition tells the system to restrict abstract function f2 to
only the * function. The ef(f0,f1) epigenome tells the system that only f0 and
f1 will participate in the evolutionary process. The ev(v0,v1,v2) epigenome
tells the system that only v0, v1, and v2 will participate in the evolutionary
process. Therefore, (E7.4) causes the system to evolve champions of a single
trignonometric function operating on a pair or triple cross correlation only i.e.
cos(x3*x1) or tan(x1*x4*x2).

In the fifth where clause (E7.5), causes the system to evolve only condi-
tional champions i.e. ((x3*x1)<cos(x5)) ? tan(x1*x4) : log(x0).

These five distinct search strategies are explored simultaneously. The re-
sulting champion will be the winning (optimal) solution across all simultaneous
search strategies.

Of course (E7) alone, with no where clauses, can guide a thorough sym-
bolic regression run; however, assuming there are five features in the problem
(x0,x1,x2,x3, and x4) and the twenty-eight operators of our basic grammar,
then (E7.1) is searching a space of (58 ∗ 287) = 5.27E+15 discrete points.
Whereas (E7.2) is searching through only (5*4) = 20 discrete points. Expres-
sion (E7.3) is searching through only (53∗2) = 250 discrete points. Expression
(E7.4) is searching through only (53 ∗ 2)4 = 3.90625E9 discrete points. Allow-
ing user specified constraints and epigenomes can greatly reduce the search
space in cases where the application warrants.

Our current abstract regression system supports user specified constraints
and epigenomes. For general regression problems, with no user specified where
clauses, the system supports an implicit opening book looking for linear,
square, cube, and trignonmetric unary functions on single features plus all
possible pair or triple cross correlations.

We believe that it should be possible to develop libraries of where clauses
useful in specific application areas. Such libaries could be developed, pub-
lished, and shared between user communities. We believe that we have just
scratched the surface on understanding the benefits possible with context sen-
sitive constraints, epigenomes, and opening books.



Abstract Expression Grammar Symbolic Regression 17

8 Enhanced Results on Nine Base Problems

We used a feature-terminated universal expression, of depth level three, for
both problem sets as shown below. In all cases the system was told to halt
when an NLSE of less than .15 was achieved at the end of an epoch. The
feature-terminated universal expression, V3, is specified as shown below. Note
that V3 and U3 are identical except for their terminators.

• V3: f0(f1(f2(v0,v1),f3(v2,v3)),f4(f5(v4,v5),f6(v6,v7)))
• U3: f0(f1(f2(t0,t1),f3(t2,t3)),f4(f5(t4,t5),f6(t6,t7)))

For the five column no noise problems, with twenty-eight operators, five
features, and five universal transforms of type V3 to choose from, there are
(58 ∗ 287)5 = 4.06753E+78 discrete points in the search space. With twenty-
eight operators and twenty features to choose from, the magnitude of the
search space for the twenty column problems cannot be expressed in our 64bit
computer. It is essentially (208 ∗ 287)20. Of course this still does not take into
account the difficulties arising from the 40% added noise.

The enhanced results of training on the nine base training models on 10,000
rows and five columns with no random noise and only 20 generations allowed,
are shown below in order of difficulty.

Table 3. Result For 10K rows by 5 columns no Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 1 0.00 0.00 0.00 0.00
cubic 1 0.00 0.00 0.00 0.00
cross 9 0.00 0.00 0.00 0.00
elipse 1 0.00 0.00 0.00 0.00
hidden 1 0.00 0.00 0.00 0.00
cyclic 1 0.00 0.00 0.00 0.00
hyper 1 0.03 0.00 0.03 0.00
mixed 35 0.87 0.26 0.88 0.27
ratio 34 0.87 0.26 0.88 0.27

The enhanced results of training on the nine base training models on 10,000
rows and twenty columns with 40% random noise and only 20 generations
allowed, are shown below in order as shown above.

Clearly, in time-constrained training (only 20 generations), the enhanced
symbolic regression system is an improvement over the previously published
results. While the enhanced system performs poorly on the two test cases
mixed and ratio with conditional target expressions, the performance on all
other nine base test cases is acceptable. In addition, the testing TCE scores



18 Michael F. Korns

Table 4. Result for 10K rows by 20 columns with 40% Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 1 0.11 0.00 0.11 0.00
cubic 1 0.11 0.00 0.11 0.00
cross 49 0.83 0.21 0.81 0.20
elipse 1 0.12 0.00 0.12 0.00
hidden 1 0.11 0.02 0.11 0.02
cyclic 1 0.14 0.00 0.14 0.00
hyper 1 0.12 0.00 0.12 0.00
mixed 56 0.90 0.29 0.90 0.30
ratio 59 0.90 0.29 0.90 0.30

indicate that we can perform some useful classification even in the difficult
conditional problems with noise added.

Taken together with the absence of bloat and increased user control of
the search space, these results portray a symbolic regression system which is
ready to handle many industrial strength problems.

9 Summary

The use of abstract grammars in symbolic regression moves the entire dicipline
much closer to industrial ready for many applications.

First, we have a formalization which clearly emphasizes our value added as
a search algorithm for finding nonlinear transformations. We are no longer cast
in a competitive role against univariate regression, multivariate regression,
support vector regression, etc. In fact we enhance these regression techniques
with our nonlinear search capabilities. For instance, this formalization gives
us the opportunity to partner with regression professionals, who have a large
body of well thought out statistics for choosing one multivariate model over
another. The situation is similar with the support vector community. I believe
that these opportunities for cross disciplinary work should be encouraged.

Second, we no longer have a bloat problem of any kind. Further exper-
imentation with context sensitive constraints and epigenomes will improve
the symbolic regression process from the user’s perspective. Effectively, with
bloat, symbolic regression is a black box tool because the resulting expression
is practically unreadable by users. However, with user specified goal expres-
sions, constraints, and epigenomes, the symbolic regression process can be-
come effectively white box. From an industrial perspective, a white box tool
is far preferable to a black box tool.

Third, we now have a much greater degree of user control over the search
space and over the form of the output. We have the potential to specify
symbolic regression problems in terms the user can understand which are



Abstract Expression Grammar Symbolic Regression 19

specific to the application. Furthermore, using multiple where clauses, the
user can be much more sophisticated in specifying search strategy. Opening
books of where clauses, useful in specific application areas, can be developed,
published, and shared between users.

Financial institutional interest in the field is growing while pure research
continues at an aggressive pace. Further applied research in this field is abso-
lutely warranted. We are using our nonlinear regression system in the financial
domain. But as new techniques are added and current ones improved, we be-
lieve that the system has evolved to be a domain-independent tool that can
provide superior regression and classification results for industrial scale non-
linear regression problems.

Clearly we need to experiment with even more techniques which will im-
prove our understanding of constraints and epigenetics. Primary areas for
future research should include: experimenting with statistical and other types
of analysis to help build conditional WFFs for difficult conditional problems
with large amounts of noise; experimenting with opening books for general
regression problems, and parallelizing the system on a cloud environment.



20 Michael F. Korns

References

1. Michael Caplan, Ying Becker (2005). Lessons Learned Using Genetic Program-
ming in a Stock Picking Context, in Genetic Programming Theory and Practice
II. Springer, New York.

2. Shu-Heng Chen (2002), editor. Genetic Algorithms and Genetic Programming
in Computational Finance. Kluwer Academic Publishers, Dordrecht Nether-
lands.

3. Russell Eberhart, Yuhui Shi, James Kennedy (2001). Swarm Intelligence. Mor-
gan Kaufman, New York.

4. Gregory S Hornby (2006). Age-Layered Population Structure For reducing the
Problem of Premature Convergence, in GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation. ACM Press, New
York.

5. Michael Korns (2006). Large-Scale, Time-Constrained, Symbolic Regression, in
Genetic Programming Theory and Practice IV. Springer, New York.

6. Michael Korns (2007). Large-Scale, Time-Constrained, Symbolic Regression-
classification, in Genetic Programming Theory and Practice V. Springer, New
York.

7. Michael Korns, Loryfel Nunez (2008). Profiling Symbolic Regression-
classification, in Genetic Programming Theory and Practice VI. Springer, New
York.

8. Michael Korns (2009). Symbolic Regression of conditional target expressions,
in Genetic Programming Theory and Practice VII. Springer, New York.

9. John R Koza (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, Cambridge Massachusetts.

10. John R Koza (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press, Cambridge Massachusetts.

11. John R Koza, Forrest H Bennett III, David Andre, Martin A Keane (1999).
Genetic Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann Publishers, San Francisco California.

12. Riccardo Poli, William Langdon, Nicholas McPhee (2008). A Field Guide to
Genetic Programming. LuLu Enterprises.

13. Michael O’Neill, Conor Ryan (2003). Grammatical Evolution: Evolutionary Au-
tomatic Programming in an Arbitrary Language. Kluwer Academic Publishers,
Dordrecht Netherlands.

14. Kenneth Price, Rainer Storn, Jouni Lampinen (2005). Differential Evolution:
A Practical Approach to Global Optimization. Springer, New York.

15. Kim-Fung Man, Kit-Sang Tang, Sam Kwong (1999). Genetic Algorithms.
Springer, New York.

16. Kenneth Price, Rainer Storn, Jouni Lampinen (2005). Differential Evolution:
A Practical Approach to Global Optimization. Springer, New York.


